翻訳と辞書
Words near each other
・ Full Force and Effect
・ Full Force Fighting
・ Full Force Gale
・ Full Force Galesburg
・ Full Force Get Busy 1 Time!
・ Full Force Nature
・ Fulke Greville-Nugent, 1st Baron Greville
・ Fulke Lovell
・ Fulke Underhill
・ Fulke Walwyn
・ Fulke Walwyn Kim Muir Challenge Cup
・ Fulkerson
・ Fulkerson Prize
・ Fulkerson, Virginia
・ Fulkerson-Hilton House
Fulkerson–Chen–Anstee theorem
・ Fulki River
・ Fulking
・ Fulks Run, Virginia
・ Full
・ Full Alert
・ Full Alert (film)
・ Full and faithful functors
・ Full and Final
・ Full Attention
・ Full Auto
・ Full Bars
・ Full Basket Belize
・ Full Belly Project
・ Full Blast


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Fulkerson–Chen–Anstee theorem : ウィキペディア英語版
Fulkerson–Chen–Anstee theorem
----
The Fulkerson–Chen–Anstee theorem is a result in graph theory, a branch of combinatorics. It provides one of two known approaches solving the digraph realization problem, i.e. it gives a necessary and sufficient condition for pairs of nonnegative integers ((a_1,b_1),\ldots,(a_n,b_n)) to be the indegree-outdegree pairs of a simple directed graph; a sequence obeying these conditions is called "digraphic". D. R. Fulkerson 〔D.R. Fulkerson: ''Zero-one matrices with zero trace.'' In: ''Pacific J. Math.'' No. 12, 1960, pp. 831–836〕 (1960) obtained a characterization analogous to the classical Erdős–Gallai theorem for graphs, but in contrast to this solution with exponentially many inequalities. In 1966 Chen 〔Wai-Kai Chen: ''On the realization of a (''p'',''s'')-digraph with prescribed degrees .'' In: ''Journal of the Franklin Institute'' No. 6, 1966, pp. 406–422〕 improved this result in demanding the additional constraint that the integer pairs must be sorted in non-increasing lexicographical order leading to n inequalities. Anstee 〔Richard Anstee: ''Properties of a class of (0,1)-matrices covering a given matrix.'' In: ''Can. J. Math.'', 1982, pp. 438–453〕 (1982) observed in a different context that it is suffient to have a_1\geq\cdots\geq a_n. Berger 〔Annabell Berger: ''A Note on the Characterization of Digraphic Sequences'' In: ''Discrete Mathematics'', 2014, pp. 38–41〕 reinvented this result and gives a direct proof.
==Theorem statement==
A sequence ((a_1,b_1 ),\ldots,(a_n,b_n)) of nonnegative integer pairs with a_1\geq\cdots\geq a_n is digraphic if and only if \sum_^a_i=\sum_^b_i and the following inequality holds for ''k'' such that 1 \leq k \leq n:
:
\sum^k_ a_i\leq \sum^k_ \min(b_i,k-1)+ \sum^n_ \min(b_i,k)


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Fulkerson–Chen–Anstee theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.